##### Personal tools
You are here: Home / FE in Fluids

# Finite Elements in Fluids

M.Sc. Simulation Sciences elective • M.Sc. Computational Engineering Science elective • M.Sc. Fundamentals of Mechanical Engineering elective • WS 2012/13

#### Notices

The oral exams are scheduled for Februrary 6, 20 and March 13, all Wednesdays.

#### Lectures

• 2013.01.23 Lecture 12: Stationary Stokes problem (6.5.1, 6.5.2), compatibility conditions, pressure stabilization (6.5.3–8)
• 2013.01.16 Lecture 11: Viscous incompressible flow (6.1, 6.2, 6.3, 6.4).
• 2013.01.09 Lecture 10: Modified equation method (3.5.3), unsteady advection-diffusion-reaction problems (5.1, 5.2), error analysis of Galerkin formulation of θ-family methods (5.4.2), stabilization of the semi-discrete scheme (5.4.5)

Note that the equation (5.16) in the book has a sign mistake; it should read:

G_\theta = \frac{\mathcal{M}(\xi) + (1-\theta) \left( \mathcal{K}(\xi,d) - \mathcal{A}(\xi,C) - r \mathcal{M}(\xi) \right)}{\mathcal{M}(\xi) - \theta \left( \mathcal{K}(\xi,d) - \mathcal{A}(\xi,C) - r \mathcal{M}(\xi) \right)}

which leads to an amplification factor:

G_\theta = \frac{1 - \frac{2}{3} \sin^2 \frac{\xi}{2} + (1-\theta) \left( - 4 d \sin^2 \frac{\xi}{2} - i C \sin \xi - r ( 1 - \frac{2}{3} \sin^2 \frac{\xi}{2}) \right)}{1 - \frac{2}{3} \sin^2 \frac{\xi}{2} - \theta \left( - 4 d \sin^2 \frac{\xi}{2} - i C \sin \xi - r ( 1 - \frac{2}{3} \sin^2 \frac{\xi}{2}) \right)}

• 2012.12.19 Lecture 9: Fourier's error analysis for hyperbolic problems (3.5.1, 3.5.2)
• 2012.12.12 Lecture 8: unsteady advection problems (3.1, 3.2, 3.4), space-time formulations (3.10), evaluations
• 2012.12.05 No lecture; extended exercise session instead
• 2012.11.28 Lecture 7: stabilized methods for transport problems (2.4), origins of stabilization: finite increment calculus (2.5.1), variational multiscale (2.5.3)

• 2012.11.21 Lecture 6: Galerkin versus exact stencils and upwinding (2.3.1, 2.3.2), balancing diffusion (2.3.3)
• 2012.11.14 Lecture 5: strong, weak and Galerkin form of advection-diffusion equation (2.1, 2.2)
• 2012.11.07 No lecture; optional Q&A session at 12:15.
• 2012.10.31 Lecture 4: weak and Galerkin forms of Poisson equation (1.5.2, 1.5.3, 1.5.4), implementation (1.5.5)

• 2012.10.24 Lecture 3: conservation laws (1.4), strong form of Poisson equation (1.5.1)
• 2012.10.17 Lecture 2: reference frames (1.3.1, 1.3.2, 1.3.3), Reynolds transport theorem (1.3.4)

• 2012.10.10 Lecture 1: introduction; FE history

Reading: Clough2004a.pdf, Zienkiewicz2004a.pdf, Krylov41a.pdf, Williamson80a.pdf (RWTH only)

#### Tools

« May 2013 »
May
MoTuWeThFrSaSu
12345
6789101112
13141516171819
20212223242526
2728293031
Upcoming Events
Marine 2013 May 29, 2013 - May 31, 2013 — Hamburg, Germany
MPF 2013 Jun 11, 2013 - Jun 14, 2013 — Sardinia, Italy
Coupled Problems 2013 Jun 17, 2013 - Jun 19, 2013 — Ibiza, Spain
USNCCM 12 Jul 22, 2013 - Jul 25, 2013 — Raleigh, North Carolina
GACM 2013 Sep 30, 2013 - Oct 02, 2013 — Hamburg, Germany
Upcoming events…