A Note on the Computation of the Comparative Stress on RBC's

M. Behbahani, D. Papadopolous, M. Probst, M. Divine

Chair for Computational Analysis of Technical Systems, CCES, RWTH Aachen, 52056 Aachen, Germany

April 08, 2009

The deviatoric stress tensor T is related to the overall tensor σ by: $T = \sigma - \frac{1}{3}(\text{tr}(\sigma))I$, where trace is defined in the following manner: $\text{tr}(\sigma) = \sigma_{11} + \sigma_{22} + \sigma_{33}$. The second invariant of a general tensor A is defined as [Borsenko A and Tarapov I, 1968: Vector and Tensor Analysis]:

$$II_A = \frac{1}{2}(\text{tr}(A)^2 - \text{tr}(A^2)) \tag{1}$$

where for a 3-dimensional case:

$$\text{tr}(A)^2 = A_{11}^2 + A_{22}^2 + A_{33}^2 + A_{11}A_{22} + A_{11}A_{33} + A_{22}A_{33} + A_{33}A_{11} + A_{11}A_{22} \tag{2}$$

and

$$\text{tr}(A^2) = A_{11}^2 + A_{22}^2 + A_{33}^2 + A_{12}A_{21} + A_{13}A_{31} + A_{21}A_{12} + A_{23}A_{32} + A_{31}A_{13} + A_{32}A_{23} \tag{3}$$

from where for symmetrical A:

$$II_A = A_{11}A_{22} + A_{22}A_{33} + A_{33}A_{11} - A_{12}^2 - A_{23}^2 - A_{31}^2 \tag{4}$$

$$II_T =$$

$$= (\sigma_{11} - \sigma_m)(\sigma_{22} - \sigma_m) + (\sigma_{22} - \sigma_m)(\sigma_{33} - \sigma_m) + (\sigma_{33} - \sigma_m)(\sigma_{11} - \sigma_m) - \sigma_{12}^2 - \sigma_{23}^2 - \sigma_{31}^2$$

$$= \sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{33}\sigma_{11} - 2\sigma_{11}\sigma_m - 2\sigma_{22}\sigma_m - 2\sigma_{33}\sigma_m + 3\sigma_m^2 - \sigma_{12}^2 - \sigma_{23}^2 - \sigma_{31}^2$$

$$= \sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{33}\sigma_{11} - 6\sigma_m^2 + 3\sigma_m^2 - \sigma_{12}^2 - \sigma_{23}^2 - \sigma_{31}^2$$

$$= \sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{33}\sigma_{11} - 3\sigma_m^2 - \sigma_{12}^2 - \sigma_{23}^2 - \sigma_{31}^2$$

$$= \sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{33}\sigma_{11} - 3 \left(\frac{\sigma_{11} + \sigma_{22} + \sigma_{33}}{3} \right)^2 + 3\sigma_m^2 - \sigma_{12}^2 - \sigma_{23}^2 - \sigma_{31}^2$$

$$= \sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{33}\sigma_{11} - \frac{1}{3} \left(\sigma_{11} + \sigma_{12} + \sigma_{22} + \sigma_{23} + \sigma_{33} + \sigma_{11} \right) - \frac{1}{3} \left(\sigma_{12} + \sigma_{23} + \sigma_{31} \right)$$

$$= \frac{1}{3} \left(\sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{33}\sigma_{11} \right) - \frac{1}{3} \left(\sigma_{11} + \sigma_{22} + \sigma_{33} \right) - \sigma_{12}^2 - \sigma_{23}^2 - \sigma_{31}^2$$

$$= \frac{1}{6} \left(2\sigma_{11}\sigma_{22} + 2\sigma_{22}\sigma_{33} + 2\sigma_{33}\sigma_{11} - 2\sigma_{11}^2 - 2\sigma_{22}^2 - 2\sigma_{33}^2 \right) - \left(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2 \right)$$

$$= -\frac{1}{6} \left[((\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2) - (\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2) \right]$$
\[-II_T = \]
\[= \frac{1}{6} \left[(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 \right] + (\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2) \]
\[= \frac{1}{6} \left[((\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2) + 6 (\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2) \right] \]
\[= \frac{1}{3} Y^2 = k^2 \]

\(Y \) is defined as tensile yield stress and \(k \) is the yield shear stress for a state of pure shear [see Johnson W. 1973: Engineering Plasticity].

\[k = (-II_T)^{\frac{1}{2}} \]

(5)

\[\mathbf{T} = \begin{pmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{pmatrix} = 2\mu \mathbf{E}(u) \]

(6)

\[\mathbf{E}(u) = \frac{1}{2} (\nabla u + \nabla u^T) = \frac{1}{2} \left(\frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial u}{\partial z} \right) + \frac{1}{2} \left(\frac{\partial v}{\partial x} \frac{\partial v}{\partial y} \frac{\partial v}{\partial z} \right) + \frac{1}{2} \left(\frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \frac{\partial w}{\partial z} \right) \]

(7)

\[\mathbf{E}(u) = \begin{pmatrix} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} & 2 \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} + \frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} & \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \\ \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} & 2 \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} + \frac{\partial u}{\partial z} \end{pmatrix} \]

(8)

\[\mathbf{T} = \mu \begin{pmatrix} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} & \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} & \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \\ \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} & \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z} + \frac{\partial u}{\partial y} \end{pmatrix} \]

(9)

Additionally for an incompressible flow we have \(tr(\mathbf{T}) = 0 \) due to mass conservation:

\[\nabla \cdot u = 0 \]

(10)

\[tr(\mathbf{T}) = 2\mu \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) = 0 \]

(11)

for \(tr(\mathbf{T})=0 \) the second invariant of \(\mathbf{T} \) is

\[II_T = \]
\[= -\frac{1}{2} tr(\mathbf{T}^2) \]
\[= -\frac{1}{2} (T_{11}^2 + T_{22}^2 + T_{33}^2 + T_{12}T_{21} + T_{13}T_{31} + T_{21}T_{12} + T_{23}T_{32} + T_{31}T_{13} + T_{32}T_{23}) \]
\[= -\frac{1}{2} \mathbf{T} : \mathbf{T} \]

Comparative shear stress as used by our group:

\[\tau_{\text{scalar}} = (-II_T)^{\frac{1}{2}} = \left(\frac{1}{2} \mathbf{T} : \mathbf{T} \right)^{\frac{1}{2}} \]

(12)
Formula for scalar stress by Bludszuweit [Bludszuweit C., 1997: Evaluation and Optimization of Artificial Organs by Computational Fluid Dynamics ASME FEDSM97-3424]:

$$\sigma_{scalar} = \left(\frac{1}{6} \sum (\sigma_{ii} - \sigma_{jj})^2 + \sum \sigma_{ij}^2 \right)^{\frac{1}{2}}$$ \hspace{1cm} (13)

The Ensight function ”fluid shear max” uses the same definition of shear stress.

Bludszuweit in her formula does not specify the indices of the sums but refers to [Johnson W., 1973: Engineering Plasticity].