Project JARA SIM

Towards a Computational Model of Blood Flow in the Left Human Heart, Aorta and Connecting Vessels

Presentation at Helmholtz Institute, Aachen
February, 22 2010

Mehdi Behbahani, Stephanie Schmitz, Mahmoud Odabai, Marek Behr
Numerical simulations

Step 1: Blood flow simulation in aorta and connecting vessels (rigid mesh)

Step 2: Blood flow simulation in a deforming mesh

Step 3: Simulation of left ventricle
(30 deforming meshes for 1 heart cycle)

Step 4: Left ventricle and connecting vessels

- Step 1 100% complete
- Step 2 60% complete
- Step 3 20% complete
- Step 4 not in this funding period
Aorta simulation:

Step 1: blood flow was computed for 5.014 l/min and 15.105 l/min case

good general agreement with data from literature

Fig1: velocity profile for flow rate 5.014 l/min computed by CATS

Fig2: CFD results for pulsatile blood flow in an idealized aorta according to Shacheraghi [1]

Fig3: Left: velocity profile in curved pipe [2]
Right: velocity profile in a bifurcation [3]
Aorta simulation:

Step 1: blood flow was computed for 5.014 l/min and 15.105 l/min case

good agreement with PIV data from HIA

Fig4: velocity profile in different sections for flow rate 5.014 l/min computed by CATS

Fig5: velocity profile in different sections, comparison CFD with PIV
Step 2: Blood flow simulation for a deforming mesh starting from a given volume mesh, its surface mesh and the geometry for a new mesh (or several meshes) XNS updates the volume mesh node coordinates.

As a first simple test we looked at a coronary artery which starts to become occluded (stenosed vessel).

The mesh update technique was validated for this application, flow computations are ongoing. Thrombosis computation planned.

Fig6: 3D deformation of a tube in XNS. Inner node coordinates are updated in the process.

Fig7: Experimental data and CFD analysis using the shown setup was studied by Bark. Occlusion time = 800 seconds. [4]
Working with Left Ventricle Surface Mesh from Mimics:

Step 3: Simulation of left ventricle (30 - 60 deforming meshes for 1 heart cycle)

HIA managed to assure identical topology for all meshes

Surface mesh smoothening required

Fig8: Meshes for different time steps have same topology.

Fig9: Overlapping elements were a problem in the beginning.
Working with Left Ventricle Surface Mesh from Mimics:

Fig10: Left: original mesh; Right: mesh with improved surface element quality.

High quality surface meshes allow for better quality volume meshes. Sharp angles have to be avoided.
XNS mesh update and flow simulation strategy:

Ablauf

1. Geometrie aus MRT Daten abstrahlen
2. Surfacemesh erzeugen
3. Volumenmesh erzeugen
4. ShiftVecotor erzeugen
5. Berechnung des nachfolgenden Gitters mittels des ShiftVectors
6. Simulation der Herzströmung
7. Auswertung der Ergebnisse

Interpolation

<table>
<thead>
<tr>
<th>Gitternr.</th>
<th>Interpolation zwischen ()^* und ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2^*</td>
<td></td>
</tr>
<tr>
<td>2 - 3^*</td>
<td></td>
</tr>
<tr>
<td>3 - 4^*</td>
<td></td>
</tr>
<tr>
<td>4 - 4.5^*</td>
<td></td>
</tr>
<tr>
<td>4.5 - 5^*</td>
<td></td>
</tr>
</tbody>
</table>

Fig11: Two subsequent mesh geometries. Major deformation during only one time step occurs. Maximum displacement per time step = 10mm
Outlook:
Step 1: Aorta simulation
• publish data
• joint publication HIA, CATS
• numerical simulation for pulsatile

Step 2: Deforming mesh simulation
• Gather further experience working with time dependent geometries with coronary artery model

Step 3: Left ventricle simulation
• receive all meshes from HIA (minimum 30, probably 60)
• perform mesh update and flow simulation
• decide on adequate boundary conditions
• method to account for heart valve movement
• joint publication HIA, CATS, HPC, JSC

Step 4: Left ventricle and connecting vessels
• will not be started within JARASIM; write proposal for further funding
Literature: